
Приложение Б

Методы расчета дорожных одежд с покрытием из камней/плит мощения

Б.1 Методы расчета жестких дорожных одежд

Метод расчета 1

Применяют для конструкций дорожных одежд (рисунок Б.1) с покрытиями из плит мощения конечной жесткости с основаниями, не способными воспринимать растягивающие напряжения при изгибе.

1 — покрытие из плит мощения конечной жесткости; 2 — подстилающий слой (песок, отсевы дробления горных пород); 3 — несущее основание (щебень, гравийно-песчаные смеси, щебень с расклинцовкой, щебеночные смеси, щебень, обработанный органическими и неорганическими вяжущими, отсевы дробления горных пород, побочные продукты промышленного производства, обработанные и необработанные вяжущими, тощий (малоцементный) укатываемый и ячеистые бетоны; 4 — дополнительный слой (песок, гравийно-песчаные смеси, щебень однофракционный (открытая смесь), гравий, укрепленный грунт, легкие бетоны)

Рисунок Б.1 – Принципиальная схема дорожной одежды

Критерии прочностного расчета:

- на сопротивление растяжению при изгибе (предельный изгибающий момент) плит мощения;
- сопротивление сдвигу слабосвязных слоев основания и подстилающего грунта.

Расчет выполняют по методикам для жестких дорожных одежд.

Условие прочности плит покрытия конечной жесткости проверяют по неравенству

$$K_{\text{np}} \cdot \sigma_{pt} \le R_{pu}^{\text{pact}}$$
, (Б.1)

где K_{np} – коэффициент прочности, K_{np} =1,0;

 $R_{pu}^{\text{pacч}}$ – расчетная прочность плит мощения на растяжение при изгибе, МПа, определяют по формуле

$$R_{pu}^{\text{pac4}} = B_{tb} \cdot K_{\text{HII}}, \qquad (\text{B.2})$$

где B_{tb} – класс бетона по прочности на растяжение при изгибе, МПа (5.7, таблица 9);

 $K_{\rm HII}$ – коэффициент набора прочности бетона со временем, $K_{\rm HII}$ = 1,2;

 σ_{pt} — расчетное напряжение растяжения при изгибе, возникающее в плите покрытия от действия нагрузки и изменений температуры по толщине плиты, МПа, определяется по формуле

$$\sigma_{pt} = \frac{6 \cdot Q_{\text{H}} \cdot K_{\text{yc},\text{T}} \cdot (M_A + 0.255)}{\kappa h_{\Pi,\text{I}}^2} , \qquad (\text{E}.3)$$

где $Q_{\rm H}$ – нормативная нагрузка на колесо, кH;

 $K_{\text{усл}}$ – коэффициент, учитывающий условия работы, $K_{\text{усл}} = 0.80$;

 M_A – безразмерный единичный момент, определяемый по таблице Б.1 в зависимости от показателя жесткости плиты;

 $h_{\text{пл}}$ – толщина плиты, м;

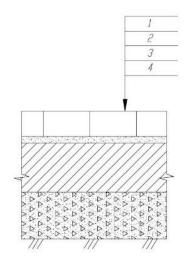
 κ – коэффициент, учитывающий конфигурацию плит: $\kappa=1$ – для круглых и квадратных;

$$\kappa = \frac{\pi}{n_c \cdot \lg \frac{\pi}{n_c}}$$
 – для плит с числом сторон более четырех; $\kappa = \frac{2}{c + \frac{1}{c}}$ – для

прямоугольных плит;

 $n_{\rm c}$ – число сторон правильного многоугольника;

c – отношение сторон (большей к меньшей) прямоугольника.


Таблица Б.1

S	До 0,5 включ.	0,75	1	1	1,5	1,75		2		2,5	3	3,5
M_A	-0,0521	-0,0544	-0,0567	-0,0611		-0,0	632	-0,06	53	-0,0693	-0,0731	-0,0767
S	4	4,5	5		6			7		8	9	10
M_A	-0,0801	-0,0833	-0,086	53	-0,0917		-0,0963		-0,1001		-0,1031	-0,1053

Минимально допустимая толщина плит независимо от результатов расчета не должна быть меньше указанной в таблице 1.

Метод расчета 2

Применяют для конструкций дорожных одежд (рисунок Б.2) с покрытиями из камней мощения и плит (с конечной жесткостью или «абсолютно жестких плит») с монолитными основаниями, способными воспринимать растягивающие напряжения при изгибе.

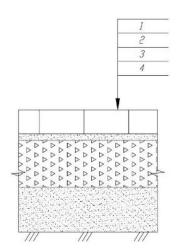
1 – покрытие (камни/плиты); 2 – подстилающий слой (песок, отсевы дробления горных пород); 3 – несущее монолитное основание (цементобетон, легкий бетон, тощий бетон, дренажные бетоны с прочностью на растяжение при изгибе не менее $0.8\,$ МПа,); 4 – щебень, гравийнопесчаные смеси, щебень с расклинцовкой, щебеночные смеси, щебень, обработанный органическими и неорганическими вяжущими, отсевы дробления горных пород, побочные продукты промышленного производства, обработанные и необработанные вяжущими, тощий (малоцементный) укатываемый и ячеистые бетоны, грунт, обработанный вяжущими, песок, гравий

Рисунок Б.2 – Принципиальная схема дорожной одежды

Критерии прочностного расчета:

- на сопротивление растяжению при изгибе (предельный изгибающий момент) плит мощения конечной жесткости;
- на сопротивление растяжению при изгибе монолитных слоев несущего основания;
- сопротивление сдвигу слабосвязных слоев основания и подстилающего грунта.

Расчет выполняют по методикам для жестких дорожных одежд.


Давление на поверхности несущего основания определяют с учетом распределительной способности покрытия (см. 5.7).

Покрытие из камней/плит мощения может моделироваться сплошным слоем (см. 5.7).

Б.2 Методы расчета нежестких дорожных одежд

Метод 1

Применяют для конструкций дорожных одежд (рисунок Б.3) с покрытиями из камней мощения или «абсолютно жестких» плит с основаниями, не способными воспринимать растягивающие напряжения при изгибе.

1 – покрытие (камни мощения, «абсолютно жесткие» плиты); 2 – подстилающий слой (песок, отсевы дробления горных пород); 3 – несущее основание (щебень, гравийно-песчаные смеси, щебень с расклинцовкой, щебеночные смеси, щебень, обработанный органическими и неорганическими вяжущими, отсевы дробления горных пород, побочные продукты промышленного производства, обработанные и необработанные вяжущими, тощий (малоцементный) укатываемый и ячеистые бетоны, грунт, обработанный вяжущими; 4 – дополнительный слой (песок, гравийно-песчаные смеси, щебень однофракционный (открытая смесь), гравий)

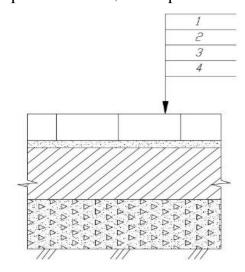
Рисунок Б.3 – Принципиальная схема дорожной одежды

При расчете дорожной одежды с покрытием из камней мощения или «абсолютно жестких» плит расчет покрытия на прочность не производят.

Критерии прочностного расчета:

- сопротивление сдвигу слабосвязных слоев основания и подстилающего грунта.

Расчет выполняют по методикам для нежестких дорожных одежд.


Давление на поверхности несущего основания определяют с учетом распределительной способности покрытия (см. 5.7).

Покрытие из камней/плит мощения может моделироваться сплошным слоем (см. 5.7).

СП 508.1325800.2022

Метод 2

Применяют для конструкций дорожных одежд (рисунок Б.4) с покрытиями из камней мощения или «абсолютно жестких» плит с несущими основаниями способными воспринимать растягивающие напряжения при изгибе.

1 — покрытие (камни мощения, плиты); 2 — подстилающий слой (песок, отсевы дробления горных пород); 3 — асфальтобетон, асфальтогранулобетон и т.п.; 4 — щебень, гравийно-песчаные смеси, щебень с расклинцовкой, щебеночные смеси, щебень, обработанный органическими и неорганическими вяжущими, отсевы дробления горных пород, побочные продукты промышленного производства, обработанные и необработанные вяжущими, тощий (малоцементный) укатываемый и ячеистые бетоны, грунт, обработанный вяжущими, песок, гравий

Рисунок Б.4 – Принципиальная схема дорожной одежды

При расчете дорожной одежды с покрытием из камней/плит мощения расчет покрытия на прочность не проводят.

Критерии прочностного расчета:

- сопротивление монолитных слоев основания (асфальтобетона, асфальтогранулобетона) растяжению при изгибе;
- сопротивление сдвигу слабосвязных слоев основания и подстилающего грунта.

Расчет выполняют по методикам для нежестких дорожных одежд.

Давление на поверхности несущего основания определяют с учетом распределительной способности покрытия (см. 5.7).

Покрытие из камней/плит мощения может моделироваться сплошным слоем (см. 5.7).